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The Si-G6 EPR spectrum, which is associated with the positive charge state of the divacancy in silicon, was
investigated by electron-nuclear double resonance. Hyperfine tensors describing the interaction between the
unpaired divacancy electron and 2°Si nuclei were determined. With these results, detailed information about
the wave function of the defect electron is gathered. Nearly all hyperfine tensors showed a distinct axial
symmetry; for the majority the symmetry axis was along one of the {111 bond directions. A total number
of 18 tensors was measured: 12 of these belong to a general class shell of atoms, the remaining 6 belong to a
mirror-plane class shell. Thus the divacancy electron was probed in a region containing 60 atoms in the
vicinity of the defect site. In agreement with a conclusion reported previously, the second largest general class
interaction was identified with the nearest-neighbor general class shell of atoms. A complete matching of
hyperfine tensors to specific shells of lattice sites was not possible without support by theoretical

considerations.

I. INTRODUCTION

Among the defects produced in silicon by irradia-
tion with energetic particles, the divacancy (V)
is to date one of the best known centers. The di-
vacancy is more conveniently studied than the
monovacancy and the self-interstitial because,
contrary to these simpler intrinsic defects, the
divacancy is not mobile at room temperature. By
electron irradiation of silicon at room tempera-
ture, divacancies are easily produced as stable
and isolated centers, randomly distributed over
the sample volume. Like many chemical impuri-
ties, divacancies introduce energy levels in the
semiconductor band gap. Depending on the position
of the Fermi level, the divacancy will assume a
charge state ranging from singly positive in p-
type to doubly negative in heavily doped n-type
silicon. Owing to a single unpaired electron spin
the divacancy is an S =3 paramagnetic center in
both the V,* and V,” charge states. The electron
paramagnetic resonance (EPR) spectrum asso-
ciated with the former state, which is the defect
being studied here, was labeled Si-G6.! Several
studies of the divacancy using EPR have been re-
ported.?"® The present work draws heavily upon
the existing knowledge of the divacancy, in partic-
ular the detailed information given by Watkins and
Corbett.*

A divacancy is introduced in a silicon crystal by
removing two atoms on adjacent lattice sites. A
defect with this structure has point-group sym-
metry D,, and can be oriented in the host lattice
in four different ways, i.e., with its threefold
axis along either of the four (111) bond directions.
New bonds are formed by linear combination of the
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dangling bond orbitals residing on the six nearest
neighbors of the divacancy. In this model the elec-
tronic ground state of the defect will be orbitally
degenerate, and therefore be unstable against
Jahn-Teller distortion. Such a distortion lowers
the symmetry of the defect to C,,, while the num-
ber of distinguishable orientations of the divacancy
in the silicon lattice is increased to 12.

An important feature of the divacancy is the
hyperfine interaction between the unpaired defect
electron and the magnetic moments of neighbor-
ing ?°Si nuclei. The three largest hyperfine inter-
actions, with ?°Si nuclei which are close neighbors
of the divacancy, were already observed in* EPR;
these interactions are labeled M1, G1, and G2 in
this paper. An illustration taken from our own
EPR spectra is given in Fig. 1. This result is
representative of the best possible resolution ob-
tainable by EPR, i.e., for a magnetic field direc-
tion along a high-symmetry crystal axis. Weaker
hyperfine interactions are not resolved in EPR.
They are the origin of inhomogeneous broadening
of the resonance lines, which have a linewidth be-
tween 1 and 2 Oe [full width at half maximum
(FWHM)]. Because of the inherent higher resolu-
tion, these weaker interactions are however
readily separated using electron-nuclear double
resonance (ENDOR).

The hyperfine interaction is expressed in the
form of a tensor whose components are the hyper-
fine constants. The isotropic part of the interac-
tion arises from Fermi contact interaction and is
proportional to the probability density of the defect
electron at the nuclear site. The anisotropic part
is due to dipole-dipole coupling between the elec-
tronic and the nuclear magnetic moments. ENDOR
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14 DIVACANCY IN SILICON:

studies therefore reveal important information
about the defect electron wave function.

Our present study is similar in scope to Hale
and Mieher’s investigation of the shallow donors
P, As, and Sb in silicon.® In their paper, ex-
tending and updating early pioneering research by
Feher,'° an abundant number of hyperfine con-
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FIG. 1. Si-G6 EPR spectrum at 14 K and 23.249 GHz
for H||[111]. (a) The whole spectrum including the larg-
est hyperfine interaction M1; (b) an expanded part of the
spectrum showing some of the weaker hyperfine inter-
actions. Labels M1, G1, etc., refer to the hyperfine
tensors.
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stants was reported. These data proved an ideal
testing ground for the Kohn- Luttinger effective-
mass theory.!'"?> Few other ENDOR studies have
been performed on paramagnetic centers in sili-
con.23-29

II. EXPERIMENTAL PROCEDURE

Float-zoned single-crystalline silicon was pur-
chased from Wacker-Chemitronic; all ingots were
b type, doped with boron. A sample used for ex-
ploratory measurements had a preirradiation re-
sistivity of 0.3 Qcm and a dislocation density of
about 2x10* cm™. The great majority of our ex-
periments was however performed using a sample
with an initial resistivity of 0.1 Q cm and specified
to be dislocation free. No differences in the re-
sults for the two batches were ever apparent.

Samples were subjected at room temperature to
irradiation by 1.5 MeV electrons from a Van de
Graaff accelerator. The bombardment current
was kept below about 10 . A/cm? to avoid heating
of the samples in excess of 50°C. Optimum di-
vacancy resonance signals required an electron
fluence of 2 X 10 electrons/cm?, corresponding
to a density of divacancies near 1.5 X% 10'® ¢cm=2,%
To improve the uniformity of the defect distribu-
tion, the electron fluence was divided in equal
doses on each of two opposite sides of the samples.
Samples were still p type after the irradiation, as
was verified by measuring the sign of the thermo-
electric power using a hot-point probe. The di-
vacancies which were observed in EPR were thus
thought to be in the positive charge state.

All magnetic resonance experiments were
carried out in a superheterodyne spectrometer
operating at 23 GHz. Klystron frequencies were
synchronized to quartz crystal harmonics. The
spectrometer was adjusted to observe the disper-
sion part of the EPR signal. A microwave power
of 5 uW was incident upon the cavity. With a cavity
quality factor @ ~9,000, this resulted in a micro-
wave field amplitude 2H, at the center of the sam-
ple position of 0,025 Oe. During ENDOR measure-
ments, the sample temperature was kept at about
17 K. At this temperature the spin-lattice relaxa-
tion time T, of the divacancy equals 2.5 X 10" sec.®
With this choice of conditions the EPR transition
is strongly saturated, because the value of the
saturation parameter is v ,H,T,= 600, Tempera-
tures were measured with a Au(0.03-at.% Fe)-
Chromel thermocouple fastened to the cavity bot-
tom and were kept constant within 0.1 K. A double
audio-frequency modulation scheme followed by
double phase-sensitive detection was used to ob-
tain a simultaneous good presentation of EPR and
ENDOR signal and a better noise reduction. As in
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a conventional EPR experiment, the magnetic
field was modulated sinusoidally at a frequency of
106 Hz and with an amplitude of 0.15 Oe. A 3.3-Hz
square-wave modulation of the rf field was applied.
The various parameters were optimized empiri-
cally in search for the best stationary ENDOR ef-
fect. In most cases this involved a compromise
between narrow linewidths and large amplitudes;
for the high-frequency resonances, linewidth con-
siderations had to be sacrificed entirely in order
to achieve an acceptable signal-to-noise ratio.

Our samples were cut and ground to obtain a
nearly cylindrical shape. Typical sample dimen-
sions were a height of 12 mm and a diameter of
1.7 mm. Samples were mounted with their axis
along the axis of the cylindrical TE,,, resonant
cavity. A (110) crystallographic direction pointed
vertically with an estimated error of less than
0.5 deg. For angular dependence studies the static
magnetic field could be rotated in the horizontal
plane, i.e., in a {110} plane of the crystal. To
introduce the rf field a coil assembly could be
inserted in the cavity.?® Two loops of fine copper
wire forming a Helmholtz configuration and fixed
to a thin-walled Teflon holder were then shifted
over the sample.?® This provided a rf field in the
horizontal plane, which could be rotated perpen-
dicular to the static field for maximum induction
of the nuclear transitions. In another arrange-
ment, use was made of a silver-coated Epibond
cavity. A spiral groove was cut in the thin silver
layer on the cylindrical side wall of the cavity to
make this wall suitable as an ENDOR coil.?® This
setup produces a vertical rf magnetic field.

III. ANALYSIS OF DATA

A. Spin Hamiltonian

To analyze magnetic resonance spectra one con-
veniently relies upon a spin Hamiltonian incorpo-
rating all the relevant interactions. In the present
case the Hamiltonian

= p’Bﬁ'ée'g_“NgN—ﬁ'fa+§'.Aa'-fa: 1)

with an electronic Zeeman interaction term, one
nuclear Zeeman term, and one hyperfine inter-
action term, respectively, was used to fit the ex-
perimental data. The parameter o enumerates
the lattice sites around the divacancy. Each lattice
site has a 4.7% probability of being occupied by a
2gj jsotope, which has a nuclear spin I=% and a
scalar nuclear g value, gy=-1.1095. Both the
hyperfine interaction and the electronic Zeeman
effect are anisotropic, and have to be described
by tensors. The electronic g tensor 'g'e is sym-
metric and has the components

2,.=2.0033, g,=g,=2.0016,
8.y=8,==0.0011, g,,=-0.0004.

These components were derived from the principal
values of the g, tensor as given by Watkins and
Corbett,* and are valid for the divacancy in the
orientation with designation ad, and the coordinate
system as defined in Fig. 2.

Anticipating the analysis of our results, the
hyperfine interaction tensors A, are separated
into a scalar part a, and a traceless tensor Bq.
Thus,

A.a;aa'i."'ﬁa: ()

with a,=§TrA, and TrB,=0. In this equation a,
describes the isotropic part of the interaction
arising from the Fermi contact interaction.?® The
expression

a, = %ﬂ'ge “BgN“NI ‘P(-f'a) 2 (3)

relates this hyperfine constant to the probability
density of the defect electron at the nuclear site
;a. Dipole-dipole coupling between the electronic
and nuclear magnetic moments is responsible for
the anisotropic part in the interaction. Using the
dipole-dipole interaction operator, one finds

(Bo)is=8eMp&xtn Y |37 ,/7® = 8,,/7°[9)

G,j=%,9,2), (4)

Z=(001]

b= (111

FIG. 2. Model of the divacancy at aa’ in the orientation
ad. The figure also shows the crystallographic direc-
tions, our choice of x,y,z coordinate system, the prin-
cipal axes of the electronic g tensor of divacancy ad,
and the plane in which the magnetic field H was varied
in the ENDOR experiments. Jahn-Teller distortions of
the lattice are not shown. '
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which shows the symmetry of the B tensor.

A solution of the spin Hamiltonian eigenvalue
problem is particularly easy in the limit of high
magnetic field. In that case the electronic and
nuclear magnetic moments are all parallel to the
magnetic field with no breakdown of the quantiza-
tion scheme. ENDOR transition frequencies are
found by applying the selection rules Am =0, &my,
=+1, with the result

vt = | gybiyH £ Si-Avh] (5)

where 7 is a unit vector in the direction of the
magnetic field H. The two ENDOR frequencies
arise from the two possible spin states of the elec-
tron, ms=i§. The ENDOR spectrum is symmetric
with respect to the nuclear Zeeman frequency
gylyH/h. For large hyperfine interactions a better
approximation is required. A formula neglecting
only terms of order (4,)%,/g,sH and also taking
the anisotropy of g, into account is

hvt = gy u iz 3| (6)

In this expression 7 is the unit vector Hg,/|H g,
specifying the electron-spin direction.

B. Symmetry considerations

1. Divacancy orientations

Before starting a discussion of the symmetry
aspects we first define, by referring to Fig. 2,
the x,y,z crystal coordinate system. A divacancy
is introduced by removal of the atoms at the origin
a’ and at the nearest-neighbor site a. The coordi-
nate system and the way of labeling divacancy
orientations are identical to the method adopted by
Watkins and Corbett.? In our analysis orientation
ad of the divacancy is chosen as the basic orienta-
tion from which the properties of the other sym-
metry-related orientations are derived.

A perfect silicon crystal is generated by applying
the operations of the space group §=Fd3m. In a
magnetic resonance experiment one does not dis-
tinguish between two defects which are trans-
formed into each other by a pure translation.
Therefore, it is sufficient for the present pur-
poses to consider only the factor group $/J with
respect to the subgroup d of primitive transla-
tions. The order O(§/9) of the factor group is 48.

Some of the symmetry operations of the crystal
leave a divacancy invariant. More specifically,
using the conventional notation {(im)proper rota-
tion |translation}, the divacancy in the orientation
ad remains unchanged under the identity {EI 0}, the
reflection {0,y |0}, the inversion {i|a(1,1,1)},
and the twofold rotation {io, 1y, |4a(T,1,1)}. Togeth-
er these four covering operations of the divacancy
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ad form a subgroup 8 of order O(8)=4.
The number of distinguishable divacancy orienta-
tions is equal to 0(8/9)/0(8)=12.

2. Shells

By applying the operations of 8 on a 2°Si atom at
a general position in the lattice, a shell of sym-
metry-related lattice sites is generated. An ex-
ample of a shell around the divacancy in orienta-
tion ad is given by the four sites labeled b, c, b’,
and ¢’ in Fig. 2, On a larger scale, the 48 sym-
metry-related lattice sites belonging to all 12
different divacancy orientations is called a super-
shell.

Equation (1) describes the interaction of a di-
vacancy in the orientation ad with one ?°Si nucleus.
From Eq. (1) 47 symmetry-related Hamiltonians
are derived by appropriate transformations. As
inversion produces no new results, only 24 dif-
ferent Hamiltonians are obtained. For one super-
shell we therefore expect an ENDOR spectrum
consisting of 24 low-frequency and 24 high-fre-
quency lines.

3. Classes

For a ?°Si atom on a general lattice site, the
operations of 8 generate a four atom shell. If
however the initial lattice site is on the mirror
plane of the divacancy, then the shell contains
only two atoms, as the reflection produces no new
results. The atoms d and d’ in Fig. 2 are an ex-
ample of this situation. We therefore distinguish
between general class shells and mirror-plane
class shells.

For a divacancy with a **Si atom on a mirror-
plane position, the spin Hamiltonian must be in-
variant under the reflection operation. For the
hyperfine tensors, the restrictions this imposes
on their most general form are A=A, and A
=A,,. The number of independent components for
a general class tensor is six, for a mirror-plane
class tensor this number is reduced to four. A
summary of shell properties is given in Table I.

4. Patterns

It was shown that for a general direction of the
magnetic field H the number of ENDOR lines on
each side of the nuclear Zeeman frequency is 24
for a general class supershell, while it is only
12 for a mirror-plane class supershell. For H in
a {1 10} plane, as in our experiments, some reso-
nance frequencies will coincide. Still more sym-
metry-required degeneracy will occur for 31 along
the low index directions [100], [111], and [011].
The ENDOR transition frequencies at these partic-
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TABLE 1. Properties of shells.

General class

Mirror-plane class

#si site location (ny,n,,n,) for
divacancy orientation ad.

Number of sites in supershell

Number of sites in shell

Number of independent hyperfine
tensor components

ny#n, ny=n,
48 24
4 2
6 4

ular directions of H are labeled by S;, T;, and
U,, respectively. The angular dependence of all
ENDOR lines of a supershell taken together form
a characteristic pattern, with distinct differences
between general class and mirror-plane class
supershells. Information on the properties of
patterns is given in Table II

C. Reduction of data

1. Experimental results

Two of the experimentally recorded ENDOR
spectra are reproduced in Figs. 3 and 4. In the
first of these figures the central region of a spec-
trum is displayed. The symmetrical appearance
of the ENDOR lines with respect to the nuclear
Zeeman resonance frequency at 6.891 MHz is
demonstrated. In Fig. 4 a smaller part of a spec-
trum more slowly swept, is presented to show the
resolution. Although in some cases lines as nar-
row as 3 kHz could be obtained, a linewidth
(FWHM) of about 10 kHz is more typical for most
experiments. Spectra for a high-symmetry crys-
tal direction are shown because then the number
of ENDOR lines is smallest and the separation of
the lines is best.

The angular dependence of the spectra was taken
by rotating the magnetic field in the (011) plane of
the sample, from 6 =0° for HII[100] to 6 =90° for
HII[011] (Fig. 2). Severe overlap between lines in
various parts of the spectra forced us to use a fine

network of angular settings in order to be able to
unravel the patterns. Normally the spectrum was
recorded at every 10° in the interval 0°< 6 <90° on
all EPR lines of the divacancy. In difficult parts
of the spectrum, data were taken at 5° intervals,
occasionally at 2° intervals. The ENDOR lines
were measured on the high-frequency side of

the nuclear Zeeman frequency. All of the spectra
recorded on the low-frequency side, confirmed the
symmetry with respect to the center of the ENDOR
spectrum.

The angular dependence of ENDOR frequencies
reveals the characteristic patterns of the general
and the mirror-plane class supershells. The
hyperfine interaction patterns of the G10 general
class and of the M5 mirror-plane class super-
shells are shown as examples in Figs. 5 and 6,
respectively. In the latter case the frequencies
S,andS,, T,and T,, U, and U, and U, and U; are
nearly equal, which is an indication of the approx-
imate (111) axial symmetry of this interaction.
Labels along the curves specify the divacancy
orientations for which the ENDOR transitions are
observable, while the degeneracy of the line is
noted in parentheses. Drawn lines were calculated
from the least-squares adjusted hyperfine tensor
components. The dots represent experimental S,
T, and U values, the number of which in all cases
agrees with the specifications given in Table II.

A total of 18 hyperfine interaction tensors was
measured and analyzed. Of these, 12 belong to

TABLE II. Properties of patterns.

General supershell

Mirror-plane supershell

Number of ENDOR lines at general
angle

Number of ENDOR lines at general
angle in {110} plane

Number of S values

Number of T values

Number of U values

24 12
12 7
3 2
4 3
6 4
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FIG. 3. Recorder trace of the divacancy ENDOR spectrum with i1 along the [100] crystal direction. The low-field
EPR transition, associated with the divacancy orientations ad, da, bc, and cb was saturated. Labels assigned to the
lines correspond with the labels given to the tensors in Table III. The central frequency equals 6.891 Mhz.
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FIG. 4. Small part of the divacancy ENDOR spectrum for ﬁll[lOO] and for the high-field EPR transition, associated
with the divacancy in the orientations ab, ac, ba, ca, bd, cd, db, and dc.
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FIG. 5. Angular dependence of the ENDOR frequencies
for the G10 shells, shown as an example of a general
class interaction.

the general class of tensors which were given the
names G1, etc. The remaining six tensors be-
longed to the mirror-plane class and were labeled
M2, etc. The hyperfine tensor components of M1,
describing the largest interaction, were taken
from EPR data of Watkins and Corbett,* who also
reported the isotropic part of the tensors G1 and
G2, Many more hyperfine interactions were clear-
ly present in the regions between 100 and 200 kHz
above and below the central frequency. These
interactions, corresponding to at least five shells,
are not yet analyzed owing to severe overlapping
of lines,

87| T

86|
~85} «—ad(2)
T %M5.da(2)
S 84t $U; bd.cd@)
i +—baca4)
0 83
z
W82l
g 81is,
L gl |
@ l—-bc.cb(4)
§ 79 =05 bdc @)
G abac(4)

| )
6 10 20 30 40 50 60 70 80 90
[100] [111] [o11]
MAGNETIC FIELD DIRECTION (DEGREE)

FIG. 6. Angular dependence of the ENDOR frequencies
for the M5 shells, shown as an example of a mirror-
plane class interaction, which moreover has also nearly
(111) axial symmetry.

2. Tensor components

By the complete angular dependence studies sets
of related S, T, and U values are sorted out. To
calculate the tensor components only the S, T, and
U values of a pattern were used. To inspect the
closeness of the final fit and to avoid false inter-
pretations the calculated patterns were afterwards
compared with the experimental ones. There are
always more than twice as many S, 7, and U val-
ues as there are independent tensor components.
Therefore a least-squares-fitting procedure was
adopted. For most tensors the high-field approxi-
mation is applicable. In such cases the least-
squares-fitting procedure is particularly easy as
the ENDOR frequencies are linearly related to the
hyperfine components. Explicit formulas express-
ing the hyperfine components in terms of S, T, and
U values can be derived.’*> However, the high-
field approximation is not always sufficiently ac-
curate. Therefore the results for all tensors were
subjected to a computerized least-squares adjust-
ment. This procedure involved diagonalization of
the full spin Hamiltonian [Eq. (1)], including the
anisotropic electronic g tensor, a scalar nuclear
gy value, and only one **Si hyperfine interaction.
Second-order hyperfine interactions were not taken
into account. Symmetric tensors were used, al-
though for the divacancy, a center of monoclinic
symmetry, a more general form of tensor is al-
lowed.3*"3% Interactions leading to asymmetry of
the tensors are negligibly small, as the orbital
angular momenta in silicon are effectively
quenched, and they enter only in second order.
The hyperfine components as determined by using
the high-field expressions served as well-chosen
starting parameters in the iterative numerical
calculations.

Results for the hyperfine tensor components,
expressed in the x,y,z crystal coordinate system
(Fig. 2), are given in columns 2-7 of Table IIIL
They are appropriate for the divacancy in orienta-
tion ad. As described in Sec. IIT A, a separation
into an isotropic part a and an anisotropic tensor
B with TrB=0 was made. For the mirror-plane
class tensors, symmetry requires B, ,=B,, and
B,,=B,,. By suitable rotations the tensors were
transformed to their own principal-axes systems.
Principal values and directions of the principal
axes are also given in Table III. The three princi-
pal values are called A;, A,, and A, in order of
descending magnitude. Directions are specified
by the two angles v, and §;, where 7, is the angle
between the ith eigenvector and its projection on
the (011) plane and the angle between this projec-
tion and the [100] axis is 6;. For a mirror-plane
class tensor it follows from symmetry that one of
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TABLE IOI. Experimental results for the hyperfine interaction tensor components for the
positive divacancy in silicon.

a By, B,, B,, B, B,
Shell (MHz) (MHz) (MHz) (MHz) (MHz) (MHz)
' General class
G1 22.53 -1.27 -0.53 1.73 2.13 1.08
G2 19.17 -0.10 0.44 -0.17 -0.85 -0.79
G3 10.18 0.26 -0.23 1.57 1.55 1.69
G4 7.05 -0.11 0.15 -0.97 1.02 -1.04
G5 3.548 -0.215 0.423 0.004 0.469 -0.180
G6 2.142 —-0.086 0.075 0.332 0.350 0.322
G17 1.775 -0.067 -0.041 -0.362 0.286 —0.278
G8 1.606 -0.003 0.027 -0.236 0.254 ~0.257
G9 1.594 -0.142 0.121 0.188 0.284 0.215
G10 0.835 0.013 0.152 -0.057 -0.103 —0.042
G11 0.602 -0.064 -0.058 0.098 0.070 0.040
G12 0.532 -0.011 0.017 0.091 0.075 0.077
Mirror-plane class
M12 147.7 B,, 0.3 B, 27.6 28.1
M2 14.87 B, 0.14 B,, 2.89 2.50
M3 5.423 B, 0.195 B, —0.782 1.026
M4 3.151 B,, -0.301 B, 0.302 0.098
M5 2.516 B,, 0.067 B,, 0.492 0.543
M6 1.320 B,, 0.040 B,, -0.208 0.260
M7 0.977 B,, 0.024 B,, —0.038 -0.073
Ay A,y Ay Y4 04 Vs Axial
Shell (MHz) (MHz) (MHz) (deg) (deg) (deg) direction
G1 26.40 20.75 20.44 —-4.4 36.8 28.5
G2 20.42 19.13 17.96 61.4 -35.5 —-28.4
G3 13.39 8.72 8.42 2.5 55.8 -28.9 d
G4 9.08 6.08 5.99 -55.7 4.2 24.8 b,c
G5 4.248 3.337 3.060 -47.7 47.8 41.8
G6 2.817 1.842 1.767 -4.1 54.0 48.7 d
G17 2.403 1.513 1.408 —48.5 -2.3 33.7 b,c
G8 2.105 1.361 1.351 -56.5 2.7 9.0 b,c
G9 2.083 1.378 1.322 -11.5 53.1 32.2 d
G10 1.021 0.864 0.620 51.2 —-65.8 -38.9
G11 0.792 0.521 0.493 3.1 29.3 30 .4
G12 0.694 0.470 0.432 -1.2 55.1 55.9 d
M1 203 120 120 0 55.2 soo d
M2 20.39 12.52 11.70 0 54.8 90 d
M3 7.207 4,592 4.470 0 —-63.0 90 a
M4 3.937 2,764 2.752 0 23.4 0
M5 3.543 2.040 1.966 0 59.1 90 d
M6 1.780 1.100 1.079 0 -61.5 90 a
M7 1.074 0.983 0.875 90 cee 0

2 From EPR data Ref. 4).

the principal axes is parallel to [011], i.e., ¥, .
=90°. The other two eigenvectors are in the (011)
plane, i.e., ¥;=7,=0°, and also |61—6k| =90°,
From the ENDOR data no unique assignment of
a hyperfine tensor with the {E| 0} and {i|1a(1,1,1)}
sites of a general class shell on the one hand, or

with the {o,11,] 0} and {iv,p,, |2a(@, 1, 1)} sites of
such a shell on the other hand, can be made. This
implies that for general class tensors in the crys-
tal coordinate system a simultaneous interchange
of B, with B,, and of B,, with B, is allowed. In
the principal axes system the equivalent statement
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is that a simultaneous change of the signs of all
7; is allowed. This ambiguity problem does not
arise for mirror-plane class tensors.

3. Error limits

In the experimental spectra the typical width of
the resonances was about 10 kHz measured at
half maximum (FWHM). Line positions could
therefore be determined with an uncertainty of
less than 2 kHz. Average deviations in comparing
experimental values with calculated ones after
least-squares adjustment of the hyperfine param-
eters were also generally within 2 kHz. Owing
to signal-to-noise problems and increase in line-
width an absolute error of 10 kHz is given for the
G1-G4 tensors. For tensor M2 these experi-
mental problems were still larger resulting in an
estimated error of 1%. Finally for the tensor M1
the hyperfine components, which were derived
from EPR data, have a possible error of less
than 3%.

In the least-squares-fitting procedure the anisot-
ropy of the g, tensor was taken into account.
This, however, is not of much practical impor-
tance as the anisotropy is smaller than the ac-
curacy of about 0.5° which was achieved in the
alignment of the sample crystallographic axes
with respect to the magnetic field.

IV. DISCUSSION OF RESULTS
A. Hyperfine axes

By inspection of Table III it becomes clear that
for most hyperfine tensors the principal values
A, and A, are nearly equal and smaller than A,.
The notable exceptions are the tensors G2, G10,
and M7. The other 16 tensors therefore describe
an interaction which is nearly axially symmetric
around the axis of the Kl eigenvector of the tensor.
It appears that for 12 of these 16 tensors the direc-
tion of axial symmetry almost coincides with one
of the (111) bond directions of the silicon crystal
lattice. The axial directions, in the adopted sys-

tem of labeling them by a, b, ¢, and d (Fig. 2),
are specified in the last column of Table ITI. A
summary of the directional properties of all the
tensors is given in Table IV.

This result suggests that for the divacancy in
its positive charge state the unpaired electron
around the defect is accommodated in the directed
orbitals between pairs of neighboring atoms. A
wave function for this electron may be constructed
by forming a linear combination of atomic 3s and
3p orbitals centered on various atoms around the
defect. The s part of the wave function with re-
spect to a specific lattice site is proportional to
the isotropic part of the corresponding hyperfine
tensor, as is expressed by Eq. (3). From the di-
pole-dipole interaction the p part of the wave func-
tion may be obtained using Eq. (4). Such an anal-
ysis indicates that, for the 12 tensors considered,
the wave function has only about 13% s character
and 87% p character. Therefore a significant de-
viation occurs from the sp® hybridized character
of the covalent bonds. This spoils the simple
picture of a hole residing in the otherwise unper-
turbed bonds in the vicinity of the defect. A more
detailed study of the defect electron wave function
will be given in a future paper.

B. Motional effects

Identification of the hyperfine tensors with speci-
fic lattice shells is one of the major problems
left., From the experimental data, as discussed
hitherto, only a broad division in tensors corre-
sponding with general class shells and tensors
for mirror-plane class shells could be made.
However, one more useful piece of experimental
information is available. At elevated tempera-
tures, above ~110 K, the jump rate of the di-
vacancy between the members of a triplet of
Jahn-Teller configurations with a common vacan-
cy-vacancy axis, e.g., ab, ac, and ad, is so high
that motionally averaged resonance spectra are
observed.? Effectively this implies a lifting of
the Jahn-Teller distortion, with a corresponding

TABLE IV. Directional properties of hyperfine interaction tensors.

General class

Number of tensors
Mirror-plane class

Total
A =A,=A,

Axial symmetry

111) axial symmetry
Al §=[111]

Ay I b=[117]) or E=[111]
A, 1d=[111)

12 7
2 1
10 6
7 5
0 2
3 oo
4 3
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increase of the point-group symmetry from the
distorted C,, to the original D;,. A whole new
classification in terms of shells and classes is
required to describe this properly. One of the
new classes is again a {110} mirror-plane class.
However, a shell of this class now contains six
atoms, and is constructed by taking together one
general shell and one mirror-plane shell of the
previously discussed C,, symmetry. An example
of a point-group D,, mirror-plane class shell are
the nearest-neighbor atoms b, ¢, d, b’, ¢’, and
d’ of the divacancy (Fig. 2).

In the motionally averaged state the hyperfine
interaction experienced by the defect electron is
an average of the original values. Watkins and
Corbett* observed a motionally averaged splitting
of 22.4 Oe for H="7140 Oe and HI[[100]. An inter-
action of this magnitude can only be explained
when the largest mirror-plane interaction M1 and
one of the larger general class interactions is in-
volved in the averaging. Three cases have to be
considered depending on whether the **Si nucleus
is located on the positions b or b’, ¢ or ¢’, or
d or d’. The differences in the hyperfine splittings
calculated for these three cases are less than 0.5
Oe, and will not be resolved in EPR. Therefore
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only one line at the average position is observed.
By averaging over the hyperfine atom position, at
the same time the ambiguity due to the y,z equiv-
alence, discussed in Sec. IIIC 2, is eliminated.
The hyperfine splittings for the conditions men-
tioned above for the experiment reported in Ref.
4 were calculated. The results, taking into ac-
count the anisotropic form of the tensors, are
23.6, 22.7, and 21.2 Oe for G1, G2, and G3, re-
spectively. The best match therefore is obtained
when averaging M1 and G2, which implies that
M1 and G2 constitute a D,; shell. No doubt the
interaction described by M1 originates from a
29Gi nucleus on the site d or d’. From this we
conclude that G2 is the hyperfine interaction tensor
for the general class shell of atoms b, ¢, b’, and
¢’, thus confirming the identification that was
made earlier.*
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